
Performance of a Heterogeneous Grid Partitioner

for N-body Applications*

Daniel J. Harvey Sajal K. Das Rupak Biswas

Dept. of Computer Science Dept. of Computer Science NAS Division

Southern Oregon Univ. Univ. of Texas at Arlington NASA Ames Research Ctr.

Ashland, OR 97520 Arlington, TX 76019 Moffett Field, CA 94035

harveyd @ sou.edu das @cse.uta.edu rbiswas @ nas.nasa.gov

Abstract

An important characteristic of distributed grids is that they allow geographically separated mul-

ticomputers to be tied together in a transparent virtual environment to solve large-scale computational

problems. However, many of these applications require effective runtime load balancing for the resulting

solutions to be viable. Recently, we developed a latency tolerant partitioner, called MinEX, specifically

for use in distributed grid environments. This paper compares the performance of MinEX to that of

METIS, a popular multilevel family of partitioners, using simulated heterogeneous grid configurations.

A solver for the classical N-body problem is implemented to provide a framework for the comparisons.

Experimental results show that MinEX provides superior quality partitions while being competitive to

METIS in speed of execution.

Keywords: Grid computing, dynamic load balancing, graph partitioning, latency tolerance, N-body

problem, heterogeneous distributed environments, performance analysis

1 Introduction

Computational grids hold great promise in utilizing geographically separated resources to solve large-scale

complex scientific probIems. The development of such grid systems has therefore been actively pursued in

recent years [I, 4, 6, 9, 10, 14, 151. The Globus project [9], in particular, has been remarkably successful

in the development of grid middleware consisting of a general purpose, portable, and modular toolkit of

utilities. A comprehensive survey of several grid systems is provided in [8].

'This work was partially supported by NASA Ames Research Center under Cooperative Agreement NCC 2-5395.

1

?

Examples of applications that could potentially benefit from computational grids are abundant in several

fields including aeronautics, astrophysics, molecular dynamics, genetics, and information systems. It is

anticipated that grid solutions for many of these applications will become viable with the advancement of

interconnect technology in wide area networks. However, applications that require solutions to adaptive

problems need dynamic load balancing during the course of their execution. Load balancing is typically

accomplished through the use of a partitioning technique to which a graph is supplied as input. This graph

models the processing and communication costs of the application. Many excellent partitioners have been

developed over the years; refer to [2] for a survey. However, the most successful state-of-the-art partitioners

are multilevel in nature [l l , 12, 211 that contract the supplied graph by collapsing edges, partition the

coarsened graph, and then refine the coarse graph back to its original size.

Although some research has been conducted to analyze the performance of irregular adaptive appli-

cations in distributed-memory, shared-memory, and cluster multiprocessor configurations [17, 18, 193, till

date little attention has been focused on heterogeneous grid configurations. In [7], we proposed a multilevel

partitioner, called MinEX, designed specifically for applications running in grid environments. MinEX op-

erates by mapping a partition graph (that models the application) onto a conJguration graph (that models

the grid), while considering the anticipated level of latency tolerance that can be achieved by the application.

Recently, this concept has been extended to heterogeneous grids [13]; however, latency tolerance was not

considered in the implementation.

This paper provides several important extensions to the work presented in [7]. Our major contributions

are to (i) demonstrate the practical use of MinEX with an actual application solver, (ii) present details of

MinEX interaction with an application to achieve improved performance in a high-latency low-bandwidth

grid environment, and (iii) directly compare MinEX performance to that of a state-of-the-art partitioner and

establish the effectiveness of algorithms of this kind.

METIS [121 is perhaps the most popular of all multilevel partitioning schemes. However, when applied

to a grid environment, METIS has some serious deficiencies. We enumerate below these METIS drawbacks

and indicate how they are addressed by MinEX:

0 METIS optimizes graph metrics like edge cut or volume of data movement and therefore operates

in two distinct phases: partitioning and remapping. This approach is usually very inefficient in a

distributed environment. MinEX, on the other hand, creates partitions that take data remapping into

consideration and strives to overlap application processing and communication to minimize the total

runtime of the application.

2

1

0 For heterogeneous grids, the processing and communication costs are non-uniform. Assuming uni-

form weights for the underlying system (as METIS does) is therefore insufficient. Instead, MinEX

utilizes a configuration graph to model grid parameters such as the number of processors, the number

of distributed clusters, and the various processing and communication speeds. The partition graph is

mapped onto this configuration graph to accommodate a heterogeneous environment.

0 Traditional partitioners like METIS do not consider any latency tolerance techniques that could be

employed by an application to hide the detrimental effects of low bandwidth in grid environments.

However, MinEX has the proper interface to invoke a user-supplied problem-specific function that

models the latency tolerance characteristics of the application.

To evaluate MinEX and compare its effectiveness to METIS for heterogeneous grids, we implemented

a solver based on the Barnes & Hut algorithm [3] for the classical N-body problem. Test cases of 16K,

64K, and 256K bodies are solved. We simulate different grid environments that model 8 to 1024 processors

configured in 4 or 8 clusters, having interconnect slowdown factors of 10 or 100 and possess various degrees

of heterogeneity. Results show that MinEX reduces the runtime requirements to solve the N-body applica-

tion by up to a factor of 6 compared to those obtained when using METIS in heterogeneous configurations.

Results also show that MinEX is competitive to METIS in terms of partitioning speed.

The paper is organized as follows. Section 2 presents basic concepts of partitioners and defines the

metrics that we use. An overview of our MinEX partitioner is provided in Section 3, while Section 4

outlines the N-body problem and our solution procedure. Section 5 describes the experimental methodology,

analyzes the results, and draws comparisons with METIS. Finally, Section 6 concludes the paper.

2 Preliminaries

Here we present some basic partitioning concepts and define the metrics used for partitioner performance

analysis.

2.1 Partition Graph

A graph representation of the application is supplied as input to partitioners so that the vertices can be

assigned among the processors of a multicomputer (or a grid) in a load balanced fashion. Each vertex v of

this partition graph has two weights, PWgt, and RWgt,, while each defined edge (v, w) between vertices v

and w has one weight, CWgt(,,,). These weights refer respectively to the processing, data remapping, and

3

communication costs associated with processing a graph vertex. Details of how these weights are computed

for our N-body application are given in Section 4.3.

2.2 Configuration Graph

To predict performance on a variety of distributed architectures, a conjigurution graph is utilized by MinEX.

This graph defines the heterogeneous characteristics of the grid environment and allows appropriate parti-

tioning decisions to be made. It contains a vertex for each cluster c, where a cluster consists of one or more

tightly-coupled processors. A graph edge (c, d) corresponds to the communication connections between the

processors in clusters c and d. A self-loop (c, c) indicates communication among the processors of a single

cluster. We assume that all processors within a cluster are fully connected and homogeneous, and that there

is a constant bandwidth for intra-cluster communication.

The vertices of the configuration graph have a single weight, Proc, 2 1. The weight represents the

processing slowdown for the processors of cluster c, relative to the fastest processor in the entire grid (nor-

malized to unity). Likewise, edges have a weight Connect(,,d) > 1 to model the interconnect slowdown

when processors of cluster c communicate with processors of cluster d. If Connect(,d) is unity, there is

no slowdown (this represents the most efficient connection in the network). If c = d, Connect(,,,) is the

intra-connect slowdown when processors of c communicate internally with one another. In addition to the

configuration graph, a processor-to-cluster mapping CMapp determines which cluster is associated with each

processor p in the grid.

2.3 Time Unit Metrics

The MinEX partitioner is unique in that it's partitioning objective is to minimize application runtime. To

accomplish this goal, the partition graph that models the application is supplied by the application and is

used to measure units of computation, communication, and data remapping. The partition graph is then

mapped onto the grid configuration graph. The following three metrics are used for these purposes.

- Processing Cost is the computational cost to process vertex 'u assigned to processor p in cluster c and

is given by Wgt; = PWgt, x Proc,.

- Communication Cost is the cost to interact with all vertices adjacent to v but whose data sets are

not local to p (assuming that 'u is assigned to p) . If vertex w is adjacent to v, while c and d are

the clusters associated with the processors assigned to u and w, this metric is given by C o q =

Ewep CWgt(,,,) x Connect(,,d). If the data sets of all the vertices adjacent to v are also assigned to

p , c o q = 0.

4

- .

1

- Redistribution Cost is the transmission overhead associated with copying the data set of 21 from p to

another processor q. It is 0 if p = q; otherwise it is given by Remap; = RWgt, x Connect(c,d). Here

we assume that p is in cluster c while q is in cluster d.

2.4 System Load Metrics

The following six metrics define values that determine whether the overall system load is balanced:

- Processor Workload (QWgt,) is the total cost to process all the vertices assigned to processor p and

is given by QWgt, = CUE, (Wgt: + C o q + Remap;).

- Queue Length (QLen,) is the total number of vertices assigned to p.

- Total System Load (QWgtTOT) is the sum of QWgt,, over all P processors.

- Average Load (WSysLL) is QWgtTOT / P.

- Heaviest Processor Load (MaxQWgt) is the maximum value of QWgt, over all processors, and indi-

cates the total time required to process the application.

- Load Imbalance Factor (LoadImb) represents partitioning quality, and is given by the ratio MaxQWgt / WSysLL.

2.5 Partitioning Metrics

These metrics are used by MinEX to make partitioning decisions:

- Gain represents the change in QWgtTOT that would result from a proposed vertex reassignment. A

negative value indicates that less processing is required after such a reassignment. The partitioning

algorithm favors vertex migrations with negative or small Gain values that reduce or minimize the

overall system load.

- V a r is computed using the workload (QWgt,) for each processor p and the average system load

(WSysLL) in accordance with the formula V a r = &(QWgt, - WS~SLL)'. Basically, it is the vari-

ance in processor workloads. The objective is to initiate vertex moves that lower this value. Since

individual terms of this formula with large values correspond to processors that are most out of bal-

ance, minimizing Var will tend to bring the system into better load balance. AVar is the change in

Var after moving a vertex from one processor to another; a negative value indicates a reduction in

variance.

5

3 The MinEX Partitioner

The MinEX partitioner was originally introduced in [7]. In this paper, we present an overview of MinEX

and introduce refinements that we have made since that previous publication. Specifically, a Jilter function

described in Section 3.3 has been added to speed up MinEX execution. The strategy for choosing vertex

reassignments has also been modified to accommodate th~s filter function and is described in Section 3.2.

Finally, the interface between the user application and MinEX is described in Sections 3.4 and 3.5.

3.1 Overview

MinEX [7] can execute either in a diffusive manner [5] where an existing partition is used as a starting

point or it can create partitions from scratch [17]. The entire partitioning process occurs in three steps:

contraction, partitioning, and refinement, similar to other multilevel partitioners. However, MinEX is unique

in that it redefines the partitioning goal to minimizing MaxQWgt rather than balancing partition workloads

and reducing the total edge cut. In addition, MinEX allows applications to provide a function to achieve

latency tolerance, if available. This user-defined function is described in Section 3.5.

The first step in MinEX is to sequentially contract the graph one vertex at a time instead of repeatedly

contracting it in halves as is common with other multilevel partitioners. The advantage of this approach is

that a decision can be made each time a vertex is later refined as to whether it should be assigned to another

processor, making the algorithm more flexible. Lf \VI is the number of vertices in the graph, contraction

requires O(lV1) steps which is asymptotically equal to the complexity of contracting it sequentially in

halves. Once the graph is contracted, the remaining vertices (metavertices) are reassigned according to

the criteria followed by the partitioning algorithm. Finally, the graph is expanded back to its original form

through the refinement process. MinEX maintains pairs of merged vertices in a stack so refinement of

vertices proceeds in reverse order from the contraction. During reassignment, as each metavertex is refined,

a decision is made as to whether it should be reassigned. A metavertex reassignment essentially migrates all

of the vertices that the metavertex represents.

3.2 Partitioning Criteria

Partitioning involves reassigning vertices from overloaded processors (where QWgt, > WS ysLL) to under-

loaded processors (where QWgt, < WSysLL). To facilitate reassignment decisions, MinEX maintains a list

of processors sorted by QWgt, values that is updated after each vertex reassignment. Because only a small

subset of processors change positions in this list after a vertex reassignment (3 or 4 of 32 processors in our

6

experiments), the overhead associated with maintaining this list is acceptable. Any vertex reassignment that

projects a negative AVar value is executed. We call this the basic partitioning criteria.

3.3 Reassignment Filter

The most computationally expensive part of MinEX is the requirement that each adjacent edge must be

considered to determine the impact of potential reassignments. To minimize this overhead, we have added a

jfilterfinction to heuristically estimate the effect of a vertex reassignment. Reassignments that pass through

the filter are then further considered in accordance with the basic partitioning criteria described in Sec-

tion 3.2. The filter utilizes edge outgoing and incoming communication totals that are maintained with each

vertex to estimate QWgt values for the source and destination processors (newQWgtj,, and newQWgt,,, re-

spectively). Using these values, the pseudo code shown in Figure 1 is executed to decide whether a potential

vertex reassignment should be accepted.

If newQWgtf,,, > QWgtfrom Reject Assignment

If newQWgtt, < QWgtt, Reject Assignment

AVar = (newQWgtj,,, - WSYSLL)~ + (newQWgt,, - WSYSLL)~

-(QWgtfrom - WSYSLL)~ - (QWgt,, - WSYSLL)~

If AVar 2 0 Reject Assignment

newGain = newQWgtf,,, + newQWgtt, - QWgtfrom - QWgt,,

If newGain > 0 And newGain2/ - AVar > ThroTTle Reject Assignemt

If fabs(newQWgtjr, - newQWgt,,) > fabs(QWgtf,, - QWgtto)

If newQWgtf,,, < QWgt,, Reject Assignment

If newQWgtt, > QWgtfrm Reject Assignment

Assignment Passes Filter
~~~~ 

Figure 1: Pseudo code to determine promising vertex reassignments. 

The reassignment filter is designed to minimize increases in projected runtime (MaxQWgt). It also rejects 

reassignments that project a positive AVar value. Increases in projected Gain is controlled by the ThroTTle 

parameter. Essentially, ThroTTle acts as a gate to prevent reassignments that cause excessive increases in 

Gain. The Gain metric is squared because Var is also of second order. A low ThroTTle could prevent 

MinEX from finding a balanced partitioning allocation, while a high value could converge to a point where 

7 



runtime is unacceptable. 

Table 1: Runtime comparisons for 64K bodies and different grid configurations using various ThroTTle 

values 

64 

128 

256 

512 

3183 4918 

3183 4922 

3183 4836 

3183 4820 

P = 64 

3004 

2968 

1627 

1627 

1626 

1628 

I 

2693 

2707 

2714 

2711 

P =  128 

I = l O  

843 

845 

845 

848 

839 

847 

822 

82 1 

817 

820 

818 

I = 100 

1619 

1619 

1619 

1614 

1554 

1484 

1438 

141 1 

1426 

1433 

1430 

Table 1 demonstrates the effect on runtimes (shown in thousands in units) using different ThroTTle 

values in our experiments. The columns labeled I = 10 and I = 100 refer to grid configurations with 

interconnect slowdowns of 10 and 100, respectively. The table shows results for grids with 32, 64, and 128 

processors. Based on these tests, the experiments that we present in Section 5 use a ThroTTle value of 32. 

Table 2 demonstrates the effectiveness of the reassignment filter for 8, 128, and 1024 processors. We 

show the total number of vertex assignments considered (Total), the number of assignments that passed 

through the filter (Accepted), and the number of potential reassignments that subsequently failed the basic 

partitioning criteria described in Section 3.2 (Fa1 led). The partition graph represents N-body problems 

consisting of 16K, 64K, and 256K bodies. The results clearly demonstrate that the reassignment filter 

eliminates almost all of the edge processing overhead associated with reassignments that are rejected. For 

example, for 128 processors and 256K bodies, a total of 4608 of 51876 potential vertex reassignments passed 

through the filter. Only one of these potential reassignments were subsequently rejected. 

3.4 Application Interface 

Application programs supply the partition graph and the configuration graph to MinEX. The partition graph 

is represented by arrays that represent the processing weights, redistribution weights, and edge weights. The 

configuration graph is created by a stand-alone utility program. The WnEX function signature is similar to 

8 



Table 2: Filter effectiveness for 16K, 64K, and 256K bodies processed by 8, 128, and 1024 processors 

P 

8 

128 

1024 

256K n-bodies I 16K n-bodies I 64K n-bodies I 
Total Accepted Failed Total Accepted Failed Total Accepted I Failed 

6011 110 0 14991 212 0 25183 

19192 2562 0 49082 5240 4 51876 

18555 2790 7 23986 6569 4 35605 12639 

that used by METIS and is shown below: 

vo id  MinEX-PartGraph ( i n t  v e r t i c e s ,  i n t  *adjcncy, i n t  *cwgt, i n t  *ewgt, 

i n t  *vadj ,  i n t  *vwgt, i n t  *rwgt, i n t  *vown, i n t  * p a r t ,  

Ipg *ipg,  U s e r  *user) 

where 

v e r t  i c e s  number of nodes in the partitioning graph, 

ad j cncy = adjacency list of vertices, 

cwgt 

e w g t  

vad j 

vwgt 

rwgt 

vown 

p a r t  

iPg  

user 

= outgoing edge weights (CWgt(,,,)), 

= incoming edge weights (CWgt(,,,)), 

= initial integer offset8 into adjcncy, cwgt, and ewgt for each vertex, 

= processing weights (WgtJ of each vertex, 

= redistribution weights (RWgt,) of each vertex, 

= original processor assignment for each vertex, 

= partition computed by MinEX and returned to the user, 

= grid configuration graph, and 

= user-supplied options containing: 

(a) ThroTTle value, 

(b) whether application latency tolerance function is provided, 

(c) number of vertices that the contracted graph should contain, 

(d) whether the partitioning is to be diffusive or be from scratch, and 

(e) whether duplicate transmissions of edges are avoided by the application. 

3.5 Latency Tolerance 

MinEX interacts with a user-defined function (called MinEXLatTol), if one IS supplied, to account for 

possible latency tolerance that can be achieved by the application. This is a novel approach to partitioning 

9 



that is not employed by existing partitioners, including METIS. The calling signature of this function is as 

follows: 

double MinEXLatTol (User *user,  Ipg *ipg, QTot * t o t )  

where 

user  

iPg 

t o t  

= user-supplied options originally passed to MinEX-Part Graph, 

= grid configuration originally passed to MinEX-PartGraph, and 

= projected totals computed by MinEX for a particular processor and contains: 

(a) p ,  the processor to whch this call applies, 

(b) Pproc, = CUE, Wgt:, the total processing weight, 

(c) Crcv, = CUE, Corru$, the cost associated with data communication, 

(d) Rrcv, = CvEp Remap:, the transmission cost associated with data relocation, and 

(e) QLenp, the total number of vertices assigned to p .  

The function utilizes these quantities to compute the projected value of QWgt,, that is returned to the 

partitioner. The projected value differs from the QWgt, definition given in Section 2.4 because some of the 

processing is overlapped with communication. 

4 N- body Application 

The N-body application is the classical problem of simulating the movement of a set of bodies based upon 

gravitational or electrostatic forces. Many applications in the fields of astrophysics, molecular dynamics, 

computer graphics, and fluid dynamics can utilize N-body solvers. The basic solution involves calculating 

the velocity and position of N bodies at discrete time steps, given their initial positions and velocities. At 

each step, there are N 2  pairwise interactions of forces between bodies. 

Of the many N-body solution techniques that have been proposed, the Barnes & Hut algorithm [3] is 

perhaps the most popular. The approach is to approximate the force exerted on a body by a cell of bodies 

that is sufficiently distant using the center of mass and the total mass in the remote cell. In this way, the 

number of force calculations can be significantly reduced. The first step is to recursively build a tree of 

cells in which the bodies are grouped by their physical positions. A cell v is considered close to another 

cell w if the ratio of the distance between the two furthest bodies in v to the distance between the centers of 

mass of v and w is less than a specified parameter 6. In this case, all the bodies in v must perform pairwise 

force calculations with each body in w. However, if w is far from v, cell w is treated as a single body using 

its total mass and center of mass for force interaction calculations with the bodies of v. An example of a 

10 



parallel Barnes & Hut implementation using message passing is described in [22]; this was later refined 

in [16]. In this paper, we modify the basic Barnes & Hut approach to construct a novel graph-based model 

of the N-body problem to integrate the application with MinEX and METIS. We then run the N-body solver 

to directly compare the runtime effects of both partitioning schemes in a distributed grid environment. 

4.1 Overall Framework 

The pseudo code in Figure 2 gives an overview of the framework for implementing the N-body application. 

At each time step, a new or modified tree of cells is recursively constructed to allocate the bodies to cells. 

Either MinEX or METIS is then invoked to balance the load among the available processors of the grid. 

The solver then computes the forces, and updates the position and velocity of each of the bodies. Relevant 

statistical and visualization information are provided at the end of each time step. The entire cycle is repeated 

for the desired number of time steps. 

Output Initial N-body Visualization Data 

Do 

Create or Modify the Barnes & Hut N-body Tree 

Call Partitioner 

Call N-body Solver 

Output N-body runtime Statistics 

Output N-body Visualization Data 

Until all time steps are processed 

Figure 2: Framework for implementing the N-body application. 

4.2 Tree Creation 

The first step in solving the N-body problem is to recursively build an octree of cells. The process begins 

by inserting bodies into an initial cell until it contains CellMax number of bodies. This parameter is set to 

minimize the number of calculations required by the solver to compute the body forces. Before the next body 

can be inserted, this cell is split into eight octants. Each of these eight smaller cells contain the previously- 

inserted bodies based on their centers of mass. Insertion of bodies into this tree continues until one of the 

cells have more than CellMax bodies. This cell is then further subdivided into eight octants, and the process 

continues. Naturally, all the bodies reside in the leaves of the octree. Figure 3 illustrates this concept: both 

11 



the spatial and tree representations are shown. The cell’s center of mass is used for subsequent searches of 

the tree. Traversal direction is determined by the octant where a body resides relative to th s  center of mass. 

Figure 3: A three-level octree and the corresponding spatial representation. 

4.3 Partition Graph Construction 

When the tree creation phase of the Barnes & Hut algorithm is finished, a graph G is constructed. This 

graph is presented to the MinEX and METIS partitioners to balance the load among the available processors. 

However, for METIS to execute successfully, G must be somewhat modified to another graph GM (described 

later in Section 4.4). For direct comparisons between the two partitioners, experiments are conducted with 

the modified graph GM. 

Each vertex ZI of G corresponds to a leaf cell C, (of IC,] bodies) in the N-body octree and has two 

weights, PWgt, and RWgt,. Each defined edge (u, w) has one weight, CWgt(,,,). These weights (described 

in Section 2.1) model the processing, data remapping, and communication costs incurred when the solver 

processes C,. The total time required to process the vertices assigned to a processor p must take into account 

all three metrics. Their values are set in accordance with the formulae below: 

PWgt, = IC,/ x (IC,l - 1 + Close,, + Far, + 2) is the number of computations that are executed 

by the solver to calculate new positions of the bodies residing in C,. Here Close, is the number of 

bodies in cells close to C, and Far, is the number of cells that are far from C,. The 2 in the equation 

represents the double integration of acceleration that is performed to arrive at body postions at the 

next time step once the affect of gravitational forces are determined. 

RWgt, defines the cost of relocating cell C, from one processor to another. Thus, RWgt, = IC,/, since 

each of the bodies in C, must be migrated. 

CWgt(,,,) represents the communication cost when cell C, is close to another cell C,. In this case, the 

mass and position of each body in C, must be transmitted to the processor to which C, is assigned. 

Thus, CWgt(,,,,) = IC, I if C, is close to C,; otherwise, it is 0. 

12 



Note that the edge (v, w) E G only if either C, is close to C, or vice-versa. Also, G is a directed graph 

because CWgt(,,,) # CWgt(,,,) if IC,l # /C,l, or whenever C, is close to C, but C, is far from C,. We do 

not model the cost to communicate the C, center of mass when C, is far from C, because each processor 

contains the tree of internal nodes making these communications unnecessary. 

4.4 Graph Modifications for METIS 

The METIS partitioner has two limitations that must be addressed before its performance can be directly 

compared to that of MinEX. First, METIS does not allow zero edge weights; second, it is unable to process 

directed graphs. Zero edge weights occur in N-body partition graphs because cell C, being close to cell C, 

does not necessarily imply that C, is close to C,. N-body graphs are directed because edge (v, w) has a 

weight equal to the number of bodies in cell C, whereas edge (w, v) has a weight equal to the number of 

bodies in cell C,. These quantities are not always equal. 

To accommodate these two limitations in METIS, a modified graph GM is generated that is usable by 

both partitioning schemes. GM differs from G in its edge weights: CWgt(,,,) = rnax(lC,l, IC,I) for all 

edges (v, w). This guarantees that the edges in GM have positive weights, and that CWgt(,,,) = CWgt(,,,). 

4.5 Solution Algorithm ' 

The force between two bodies (andor cells if they are far enough) are calculated using Newtonian gravita- 

tional formulae. For the sake of completeness, these formulae are enumerated below: 

- The position vector p b  = (z6, yb, z6) represents the location of body b. 

- The distance scalar r(b, c)  = d ( x b  - zc)2 + (yb - yc)2 + ( z b  - zc)2 is the Euclidean distance be- 

tween bodies b and c. 

- The gravitational force between bodies in the z direction is given by F,(b, c) = Gmbmc(zb - 

zc) / ( r (b ,  c ) ) ~ .  Here, G is the gravitational constant, while m6 and mc indicate the body masses of 

b and c, respectively. Note that a small smoothing constant is added to r(b, c )  to prevent division by 

zero. The forces between bodies in the y and z directions are similarly defined. 

- The acceleration vector ub = (ui, ui, u:) for b is computed using the formula F = mu. Acceleration 

is then integrated to compute the velocity vector v b  = (v:, vi ,  $). A second integration is performed 

on vb to compute the position of b at the next time step. All integrations use a leap-frog method. For 

example, if pk,  wk, and uk respectively indicate the position, velocity, and acceleration of b at time 

step n, and At is the size of the time step, the position and velocity of b at time step (n + 1) are: 
6 vn+llz = vi + a; x ~ t / 2 ,  

13 



4.6 Parallel Implementation 

We have implemented the N-body solver using a message passing model. Each processor contains the 

internal nodes of the Barnes & Hut tree so that excessive communication between processors is avoided. The 

pseudo code in Figure 4 indicates solver execution by each processor. The processing steps are designed so 

that the application can minimize the deleterious effects of low bandwidth. Basically, processors distribute 

data sets and communication information as early as possible so that computation can be overlapped with 

communication. 

All to All Broadcast of changes to the internal nodes of the Barnes & Hut tree 

Relocate all n-bodies that are to be reassigned based on the computed partition 

For each data set that is relocated to this processor 

Unpack and store the data 

Calculate force interactions between all local close cells 

For each body assigned to this processor 

Transmit body and cell position and mass data of remote close bodies 

For each body assigned to this processor 

Calculate force interactions with local far cells 

While more position and mass data remain to be received 

Receive position and mass communication data 

Calculate force interactions using data received 

For each body assigned to this processor 

Integrate to determine new body position 

Figure 4: Pseudo code for the N-body solver on each processor. 

A reduction in communication is achieved by recognizing that position data need not be obtained for 

the bodies that have been relocated away from a processor during the time step. This is because the solver 

maintains position information for cells that were relocated in the current time step. MinEX automatically 

accommodates th s  optimization without special user interface logic. 

14 



5 Experimental Study 

In our experiments, we simulate a grid environment in which the N-body solver is executed. Our simulator 

models communication using message passing primitives similar to those implemented in mpi (http://www- 

unix.mcs.anl.gov/mpi). The grid environment is modeled using discrete time simulation and uses the grid 

configuration graph (defined in Section 3.4) to account for latency and bandwidth. Experimental test cases 

with 16K, 64K, and 256K bodies are considered that model two neighboring Plummer galaxies that are 

about to merge [20]. The partition graphs for these test cases respectively contain 4563, 8091, and 14148 

vertices, and 99802, 159496, and 236338 edges. 

Graphs labeled G in the following tables refer to the directed graph descnbed in Section 4.3 and are 

used only by MinEX. Graphs labeled GM are undirected as described in Section 4.4 to accommodate the 

requirements of METIS. Both MinEX and METIS are run on GM to obtain direct comparisons between the 

two partitioning schemes. The METIS k-way partitioner is used selecting its option to minimize edge cuts. 

The grid configuration graph is varied to evaluate performance over a wide spectrum of heterogeneous 

grid environments. The total number of processors ( P )  varies between 8 to 1024 depending on the ex- 

periment. The number of clusters (C) is either 4 or 8, while interconnect slowdowns ( I )  are 10 or 100. 

We always assume a constant value of I for communication within clusters as it is typically true for real 

geographically distributed grids. 

Three configuration types (HO, UP, and DN) are used in our experiments. The HO configurations 

assume that all processors are homogeneous and grouped evenly among the clusters with intra-connect and 

processing slowdown factors of unity. The ones labeled UP assume that processors in cluster i have intra- 

connect and processing slowdown factors of 22 - 1. Therefore, processors in clusters with lower ids have 

greater communication and processing capability than those with higher ids. Finally, the configurations 

labeled DN assume that the processors in cluster i have intra-connect slowdown factors of 2C - 1 - 22 

and processing slowdown factors of 22 - 1. These configurations assume that clusters with lower ids have 

greater communication capability but lesser processing power than clusters with higher ids. This spectrum 

of configurations allows us to consider a variety of heterogeneous grid characteristics. The results of our 

experiments are presented in the following subsections. 

5.1 Multiple Time Step Test 

This set of experiments determines whether running multiple time steps are likely to significantly impact the 

overall performance. Table 3 presents runtimes (in thousands of units) and LoadImb when executing 1 and 

15 



50 time steps. Mi&? is run with both the G and GM graphs, METIS is run only with the GM graph, and 

both partitioners are invoked before the solver executes each time step. The partition graph represents 16K 

bodies; the configuration type is UP; while interconnect slowdowns, number of processors, and number of 

clusters are respectively set as I = 10, P = 64, and C = 8. Results show that running multiple time steps 

have little impact. Our subsequent experiments therefore execute only a single time step. 

5.2 Scalability Test 

Table 3: Performance for 1 and 50 time steps 

I 1 time step I 50 time steps 1 

MinEX-G 

2.16 

~~ 

Runtime LoadImb 

1534 2.03 

The purpose of the next test is to determine how the application scales with the number of processors. We 

process graphs representing 16K, 64K, and 256K bodies using the U P  configuration containing between 8 

and 1024 processors that are distributed among 8 clusters. Table 4 reports runtimes (in thousands of units) 

and shows that the application scales well to 128 processors. As a result, our subsequent load balance 

comparison tests are conducted only for P = 32, P = 64, or P = 128. 

Table 4: Runtime (in thousands of units) comparisons for varying numbers of processors 

Bodies 

16K 

64K 

256K 

Graph ‘Ifipe 

MinEX-G 

MinEX-GM 

METIS - Gil.i 

MinEX- G 

MinEX- GM 

METIS -GM 

MinEX-G 

MinEx-GM 

METIS-GM 

8 

2792 

2867 

10384 

12035 

12085 

43785 

78297 

78396 

301573 

16 

1445 

1466 

5330 

6172 

6233 

23235 

39335 

39448 

151983 

Number of processors P 

32 

760 

780 

2919 

3184 

3217 

11738 

20038 

20193 

760 17 

64 

40 1 

413 

1630 

1625 

1656 

6150 

10187 

10183 

38790 

128 

204 

206 

1619 

822 

837 

3110 

5113 

5174 

19734 

256 

124 

124 

1395 

716 

716 

3113 

2917 

2927 

9901 

- - 

- 

512 

94 

94 

847 

355 

355 

3735 

1756 

1767 

507 1 

- - 

- 

1024 

268 

268 

1209 

326 

268 

3664 

1310 

1310 

5220 

- - 

16 



Table 5: MinEX and METIS partitioning speed (in seconds) 

Bodies 

16K 

64K 

256K 

Graph Type 

MinEX-G 

MinEX-GM 

METIS - GM 

MinEX-G 

MinEX- GM 

METIS - GM 

MinEX-G 

MinEX-GM 

METIS-GM 

Number of processors P 

32 

0.23 

0.23 

0.35 

0.40 

0.39 

0.45 

0.57 

0.55 

0.59 

__ - 64 

0.33 

0.32 

1.02 

0.59 

0.58 

0.60 

0.71 

0.69 

0.76 

- - 
128 I 256 

0.53 1.09 

0.53 1.13 

1.05 1.46 

1.00 1.93 

1.05 1.99 

1.55 1.82 

1.08 2.27 

1.08 2.30 I 1.20 2.57 

512 

1.58 

1.51 

1.81 

3.09 

3.09 

2.32 

5.37 

5.88 

3.18 

__ __ 1024 

2.36 

2.39 

2.88 

4.93 

4.73 

3.42 

9.08 

9.17 

4.18 

- - 

- 

5.3 Partitioner Speed Comparisons 

In this section, we compare the MinEX partitioning speed to that of METIS. For these experiments, P 

is varied between 8 and 1024 with partition graphs representing 16K, 64K, and 256K bodies. The UP 

configuration is used with C = 8 and I = 10. Results in Table 5 show that MinEX executes faster than 

METIS in the majority of cases. For example, if P = 128, MinEX outperforms METIS on all graph sizes. 

However, METIS has a clear advantage when processing the 256K case with f’ = 512 or P = 1024. In 

general though, we can conclude that MinEX is at least competitive with METIS in execution speed. 

5.4 Partitioner Quality Comparisons 

In this section, we present three tables to extensively compare the quality of partitions generated by MinEX 

and METIS. Tables 6, 7, and 8 show N-body application runtimes and LoadImb results for graphs repre- 

senting 16K, 64K, and 256K bodies. Each table contains results of runs using the UP, HO, and DN grid 

configuration types. The number of processors is varied between 32 and 128, the number of clusters is 4 or 

8, and the interconnect slowdowns are set to 10 or 100. 

5.4.1 16K Bodies 

Table 6 presents results of runs using partition graphs representing 16K bodies. These results show that 

MinEX has a significant advantage over METIS in the heterogeneous UP and DN configuration types. For 

example, if P = 64 and C = 8, MinEX shows an improvement in runtime by a factor of 4. If P = 128, the 

advantage increases to a factor of 6. In both cases, the improvement in load balance is also very significant. 

17 



Results for the homogeneous graph HO are less conclusive. Here, METIS is competitive with MinEX; 

however, in several cases, MinEX still has a significant advantage (e.g., P = 64, C = 8). These results are 

not surprising given that MinEX’s strategy to minimize the edge cut should be effective in homogeneous 

configurations. Note that MinEX running with the graph G is in general superior to MinEX running with 

the graph GM. This result is somewhat expected because G models the actual solver more closely than 

GM does. However, MinEX using GM still has similar advantages over METIS as we have just discussed. 

One final observation is that MinEX has a significant but smaller advantage over METIS for configurations 

where the interconnect slowdown is greater ( I  = 100). This is because as interconnect slowdowns increase, 

the communication overhead begins to dominate the application. The differences in intra-connect commu- 

nication and processing speeds therefore become less significant and in effect the network becomes more 

homogeneous. Perhaps if MinEX is refined to put a greater focus on achieving a minimum communication 

cut, it could retain more of its advantage over METIS in these cases. 

5.4.2 64K Bodies 

The experiments shown in Table 7 are the same as those presented in Section 5.4.1 but with the larger 

partition graph representing 64K bodies. The results are very similar to those shown in Table 6 but with a 

few surprising differences. For example, some of the MinEX results with the DN configuration are worse 

than the corresponding results with the UP type. For example, when P = 128 and C = 4, MinEX-G 

shows a runtime of 998 with UP but 1489 with DN. It is interesting to note that the MinEX partitioner 

estimated a runtime of 975 and a load balance of 1.0001 in the DN case. The discrepancy is explained in 

that processors incur excessive idle time when processing the application with the DN configuration so that 

the partitioner estimates are not realized. This illustrates a potential problem area in the use of partitioners 

for solving grid-based applications. Even if communication costs can be exactly predicted, the dynamics of 

the application can still result in unexpected idle time. To further investigate this problem, we modified our 

simulator to accommodate multiple i/o channels at each processor (the original version assumed that each 

process has only one i/o channel). With two channels per processor, the solver executed the application with 

a runtime of 975; exactly as MinEX estimated. With four input channels per processor, the runtime was 973; 

a minimal additional improvement. However, no such improvements were obtained when using METIS. 

5.4.3 256K Bodies 

The results shown in Table 8 are from comparison experiments on partition graphs representing 256K bodies. 

Performance with the UP and DN configuration graphs are consistent with those presented in Sections 5.4.1 

18 



and 5.4.2; however, the HO experiments produced additional surprises. Here, METIS has a clear advantage 

when P = 32 or P = 64, and I = 100. When investigating these cases, we discovered that MinEX is 

converging very tightly to a estimated partition (LoadImb of 1.0001) but is converging at too high a value. 

Evidently, the partitioning criteria for vertex reassignments needs to be refined to prevent this situation. This 

is an open research area that needs to be addressed if MinEX (or any other grid-based partitioner) is to be 

successfully utilized as a general purpose tool. 

6 Conclusions 

In this paper, we have used the classical N-body application to evaluate our latency-tolerant partitioner, 

called MinEX, designed specifically for heterogeneous distributed computing environments such as the 

NASA Information Power Grid (IPG). The MinEX design has significant advantages over those of tradi- 

tional partitioners. For example, its partitioning goal to minimize application runtimes, its ability to map 

applications onto heterogeneous grid configurations, and its interface to application latency tolerance in- 

formation make it well suited for grid environments. In addition, MinEX is also able to partition directed 

graphs with zero edge weights (which occur in graphs modeling N-body problems); a distinct advantage 

over popular state-of-the-art partitioners such as METIS. 

Using a solver that we developed for the N-body problem, we compared the performance of MinEX to 

METIS to determine whether actual results match theoretical expectations. Extensive experimental results 

showed that while MinEX produces partitions of comparable quality to those by METIS on homogeneous 

grids, it improves application runtimes by a factor of six on some heterogeneous configurations. The ex- 

periments demonstrate the feasibility and benefits of our approach to map application partition graphs onto 

multiprocessor grid environments, and to incorporate latency tolerance techniques directly into the partition- 

ing process. The experiments also reveal issues that need to be addressed if a general grid-based partitioning 

tool is to be realized. For example, the number of i/o channels per processor affects the actual runtime and 

load balance that is achieved by the application because the resulting idle time is directly affected. Fur- 

thermore, additional schemes for reassigning vertices in a grid-based environment need to be explored so 

that consistent results can be achieved in all grid-based configurations. We are actively investigating these 

refinements. Additional performance studies are also being considered. 

19 



References 

[l]  D. Abramson, R. Sosic, J. Giddy, and B. Hall, “Nimrod: A tool for performing parametised simulations 

using distributed workstations,” 4th IEEE Symposium on High Per$ormance Distributed Computing, 

(1995) 112-121. 

[2] C.J. Alpert and A.B. Kahng, “Recent directions in netlist partitioning: A survey” Integration, the VLSI 

Journal, 19 (1995) 1-81. 

[3] J. Barnes and P. Hut, “A hierarchical O(N log N )  force calculation algorithm,” Nature, 324 (1986) 

446-449. 

[4] H. Casanova and J. Dongarra, “NetSolve: A network-enabled server for solving computational science 

problems,” International Journal of Supercomputer Applications, 1 1 (1 997) 212-223. 

[5] G. Cybenko, “Dynamic load balancing for distributed-memory multiprocessors,” Journal of Parallel 

and Distributed Computing, 7 (1 989) 279-301. 

[6] J. Czyzyk, M.P. Mesnier, and J.J. Mori, “The network-enabled optimization system (NEOS) server,” 

Preprint MCS-P615-1096, Argonne National Laboratory, 1997. 

[7] S.K. Das, D.J. Harvey, and R. Biswas, “MinEX: A latency-tolerant dynamic partitioner for grid com- 

puting applications,” Future Generation Computer Systems, 18 (2002) 477489. 

[8] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure, Morgan Kauf- 

mann, 1999. 

[9] Globus Project, See URL http://www.globus.org. 

[lo] A.S. Grimshaw and W.A. Wulf, “The Legion vision of a worldwide computer,” Communications of the 

ACM, 40 (1997) 3945.  

[l 11 B. Hendrickson and R. Leland, “A multilevel algorithm for partitioning graphs,” Technical Report 

SAND93-1301, Sandia National Laboratories, 1993. 

[ 121 G. Karypis and V. Kumar, “Parallel multilevel k-way partitioning scheme for irregular graphs,” Tech- 

nical Report 96-036, University of Minnesota, 1996. 

[13] S .  Kumar, S.K. Das and R. Biswas, “Graph partitioning for parallel applications in heterogeneous grid 

environments,” 16th International Parallel and Distributed Processing Symposium, 2002. 

20 



[14] J. Leigh, A.E. Johnson, and T.A. DeFanti, “CAVERN: A distributed architecture for supporting scal- 

able persistence and interoperability in collaborative virtual environments,” Virtual Reality Research, 

Development and Applications, 2 (1997) 217-237. 

[15] M.J. Litzdow, M. Livny, and M.W. Mutka, “Condor - a hunter of idle workstations,” 8th International 

Conference on Distributed Computing Systems, (1988) 104-1 11. 

[ 161 P. Liu and S. Bhatt, “Experiences with parallel N-body simulations,” 6th ACM Symposium on Parallel 

Algorithms and Architectures, (1988) 122-13 1. 

[17] L. Oliker and R. Biswas, “Parallelization of a dynamic unstructured algorithm using three leading 

programming paradigms,” ZEEE Transactions on Parallel and Distributed Systems, 1 1 (2000) 93 1- 

940. 

[18] H. Shan, J.P. Singh, L. Oliker, and R. Biswas, “A comparison of three programming models for adap- 

tive applications on the Origin2000,” Journal of Parallel and Distributed Computing, 62 (2002) 241- 

266. 

[19] H. Shan, J.P. Singh, L. Oliker, and R. Biswas, “Message passing and shared address space parallelism 

on an S M P  cluster,’’ Parallel Computing, 29 (2003) 167-186. 

[20] J.P. Singh, C. Holt, T. Totsuka, A. Gupta, and J. Hennessy, “Load balancing and data locality in 

adaptive hierarchical N-body methods: Barnes-Hut, fast multipole, and radiosity,” Journal of Parallel 

cuzd Distributed Computing, 27 (1995) 118-141. 

[21] C. Walshaw, M. Cross, and M. Everett, “Parallel dynamic graph partitioning for adaptive unstructured 

meshes,” Journal of Parallel and Distributed Computing, 47 (1997) 102-108. 

[22] M.S. Warren and J.K. Salmon, “A parallel hashed oct-tree N-body algorithm,” Supercomputing ’93, 

(1993) 12-21. 

21 



1.23 

1.82 

3.19 1 

UP HO 

1 .oo 
1.04 

1.88 

1.07 

1.22 

1.74 

1.01 

1.04 

2.01 

197 

206 

196 

92 1 

1167 

1167 

197 

211 

196 

1.03 

1.17 

1.91 

1.01 

1.05 

2.01 

1.10 

1.28 

1.72 

1.03 

1.05 

2.16 

1.05 

1.22 

2.01 

1.03 

1.03 

3.98 

1198 

1417 

1182 

106 

109 

108 

450 

612 

62 1 

109 

115 

108 

549 

685 

841 

94 

94 

131 

1.32 

2.24 

2.01 

1.04 

1.05 

4.27 

1.17 

1.23 

1.05 

426 

408 

84 1 

94 

94 

131 

428 

633 

604 

Table 6: Runtime (in thousands of units) comparisons for 16K bodies 

DN 
Type Runtimc 

MinEX- G 

MinEX-G 

MinEX-GM 

METIS-GM 1363 

Runtime Loadmt Loadmb 

1.02 

1.06 

1.07 

1.02 

1.25 

2.49 

1.02 

1.09 

1.07. 

1.02 

1.24 

1.67 

1.01 

1.05 

1.88 

46 1 

480 

1362 

1046 

1196 

1363 

763 

792 

2919 

1371 

1574 

2920 

235 

245 

76 1 

634 

746 

763 

100 1.07 

1.21 

1.73 

1.01 

1.04 

2.01 

1.03 

1.17 

1.90 

1.04 

1.04 

1.04 

10 MinEX-G 760 

MinEX-GM 780 

METIS-GM 2919 

100 MinEX-G 1347 

MinEX-GM 1562 

METIS-GM 2920 

10 

- 
100 

-- 
IO 

- 
100 

- 
10 

MinEX-G 234 

MinEX-GM 245 

METIS-GM 761 

MinEX-G 620 

MinEX-GM 737 

METIS-GM 763 

WinEX-G 40 1 

W~EX-GM 413 

METIS-GM 1630 

MinEX-G 794 

UinEX-GM 936 

~ETIS-GM 1632 

vlinEX-G 121 

VkEX-GM 122 

VIETIS-GM 755 

1.08 

1.11 

1.04 

1.20 

1.45 

2.12 

1.11 

1.27 

1.73 

372 

42 1 

1630 

1.01 

106 

1.04 

1.11 

1.15 

1.04 

1.03 

1.39 

2.01 

1.80 

1.44 

1.05 

~ 

798 

946 

1632 

194 

194 

917 

493 

482 

1632 

1.04 

1.20 

2.00 
~ 

1.11 

1.15 

4.60 

1.22 

1.20 

2.00 

100 dinEX- G 

4inEX-Gh.r 

VIETIS-GM 

353 

425 

1632 

1.29 

1.40 

2.01 

10 vlinEX-G 

dinEX-GM 

AETIS - G M 

204 

206 

1619 

1.80 

1.55 

1.05 

196 

217 

1619 

1.20 

1.05 

1.05 

100 
~ 

AinEX-G 

4inEX-GM 

465 

519 

476 

678 

1619 

1.18 

1.65 

3.97 1 METIS-GM I 1619 

22 



LoadImb S P e  Runtime 

32 

32 

32 

32 

64 

4 1( 

4 10( 

8 1( 

8 10C 

4 10 

1655 

1634 

2018 

417 

432 

425 

1042 

1140 

1245 

419 

430 

425 

1194 

1308 

1434 

1.05 4916 

1.03 5333 

1.72 11738 

1.02 98 1 

1.06 1004 

1.09 2878 

1.03 1919 

1.35 2299 

2.18 2879 

1.02 1634 

1.06 1658 

1.09 6150 

1.03 2716 

1.29 3140 

1.47 6150 

- 
64 

- 
64 

- 
64 

- 
128 

- 
128 

- 
128 

- 
128 

- 

4 

8 

8 

4 

4 

8 

8 

100 

10 

100 

10 

100 

10 

100 

MinEX-G 

MinEX-GM 

METIS-GM 

MinEX-G 

MinEX-GM 

METIS-GM 

MinEX-G 

MinEX-GM 

METIS-GM 

MinEX-G 

MinEX-GM 

METIS-GM 

1625 

1656 

6150 

2705 

3102 

6150 

498 

520 

1478 

998 

1177 

1479 

265 

265 

276 

854 

983 

993 

265 

265 

276 

1.24 854 

1.24 848 

1.54 1784 

1.38 1489 

1.20 1554 

1.55 1784 

1.24 838 

1.24 842 

1.55 3110 

Table 7: Runtime (in thousands of units) comparisons for 64K bodies 

I UP HO I DN 

LoadImb 

1.01 

1.02 

1.82 

1.01 

1.03 

1.82 802 1.05 5574 

MinEX-G 

MinEX-GM 

METIS-GM 

3377 

3812 

5775 

1.05 

1.18 

1.80 

1.09 

1.18 

1.80 

MinEX-G 

MinEx-GM 

METIS - GM 

3184 

3217 

11718 

1.00 

1.02 

1.91 

1.01 

1.02 

1.71 

3189 

3234 

802 1.05 11738 

MinEX-G 

M ~ ~ E X - G M  

METIS - G M 

4822 

5312 

11718 

1.08 

1.12 

1.91 

1.05 

1.12 

1.90 

1.01 

1.03 

1.85 

1.10 

1.27 

1.81 

1.01 

1.03 

1.98 

1.06 

1.17 

1.96 

1.00 

1.03 

1.25 

MinEX-G 

MinEX-GM 

METIS-GM 

979 

1005 

2878 

MinEX-G 

MinEx-GM 

METIS-GM 

1869 

2297 

2879 

1.10 

1.28 

1.81 

1.01 

1.03 

1.98 

1.07 

1.17 

1.96 

1.19 

1.17 

1.55 

1.10 

1.09 

1.55 

1.14 

1.31 

1.80 

1.16 

1.16 

1.55 

1.33 

1.43 

1.56 

MinEX-G 

MinEX-GM 

METIS - GM 

822 

837 

3110 

1.37 

1.34 

1.58 

1438 

1761 

3110 

1.10 

1.25 

1.92 

1764 

1.93 1068 2.54 31 10 

23 



5137 

5178 

5122 

7239 

6929 

5132 

5177 

5188 

5122 

7399 

754 1 

5199 

2590 

2625 

2650 

423 1 

4131 

3334 

2590 

2625 

2656 

4241 

4894 

3842 

1384 

1384 

1443 

1.01 

1.02 

1.04 

1.19 

1.17 

1.04 

1.02 

1.02 

1.04 

1.19 

1.23 

1.05 

1.01 

1.03 

1.07 

1.22 

1.28 

1.33 

1.02 

1.03 

1.07 

1.27 

1.20 

1.51 

1.03 

1.07 

1.15 

- 
32 

- 
32 

- 
32 

128 

- 
128 1.27 

1.29 

1.20 

1.26 

1.29 

1.20 

2324 1.24 

2464 1.42 

2337 1.79 

1353 1.07 

1372 1.07 

1443 1.15 

Table 8: Runtime (in thousands of units) comparisons for 256K bodies 

I UP DN 

LoadImt: Runtimt 

12122 

12223 

35474 

LoadImb 

1 .oo 
1.01 

1.79 

MinEX- G 

MinEX-GM 

METIS- GM 

MinEX-G 

MinEX-GM 

METIS - GM 

MinEX-G 

MinEX- G M 

METIS- GM 

MinEX-G 

MinEX-GM 

METIS-GM 

1.00 

1.01 

1.79 

1.04 

1.09 

1.79 

1.00 

1.01 

1.92 

121 14 

12186 

35474 

12344 

14089 

35475 

20038 

20 193 

76017 

21173 

23471 

760 18 

1.04 

1.10 

1.79 

1.00 

1.01 

1.92 

1.05 

1.06 

1.92 

1 .oo 
1.01 

1.82 

12355 

14628 

37475 

20095 

20220 

76017 

2 1634 

24136 

76018 

6124 

6172 

18102 

1.06 

1.06 

1.93 

64 10 MinEX-G 

MinEX-Ghr 

METIS - GM 

6109 

6158 

I8102 

1 .oo 
1.01 

1.82 

64 100 MinEX-G 

MinEX-GM 

METIS-GM 

6627 

8237 

18102 

1.09 

1.11 

1.82 

6616 

8276 

18102 

1.07 

1.11 

1.82 

64 10 MinEX-G 

MinEX- GM 

METIS-GM 

10187 

10183 

38379 

1.01 

1.01 

1.95 

10160 

10222 

38379 

1 .oo 
1.01 

1.95 

64 100 MinEX-G 

MinEx-GM 

METIS-GM 

11459 

13400 

38791 

1.08 

1.08 

1.95 

11982 

13797 

38791 

1.06 

1.08 

1.95 

10 

- 
10 

1.21 

1.21 

1.23 

4362 

4357 

10105 

1.19 

1.21 

1.94 

MinEX-G 

MinEX-GM 

HETIS-GM 

MinEX-G 

MinEX-G.w 

METIS - GM 

3094 

3119 

9209 

3654 

4284 

9210 

1.20 

1.33 

1.27 

1.30 

1.27 

1.96 

6545 

5896 

10185 

5174 

5174 

19374 

128 100 MinEX-G 

vlinEX-GM 

dETIS - GM 

5113 

5174 

19734 

128 100 

- 

vlinEX-G 

dinEX- GM 

~ETIS-GM 

6160 

7109 

19735 

1.07 

1.07 

1.96 

2111 

2326 

2337 

1.11 

1.22 

1.74 

6620 

742 1 

19735 

1.09 

1.12 

1.96 

24 


